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Decarbonisation of mobility
cannot ignore the hard-to-
abate aviation sector.
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Hydrogen and derivatives are compelling solutions for bha
aviation. Operational profile, fuelling time, power, fuel density S
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and range are important decision factors. =
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Energy density of CNG compared to various forms of hydrogen
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The volumetric energy density
of hydrogen at 700 bar is lower
than CNG at 250 bar

The implication is that high
pressure compression is
essential for distribution and
storage of gaseous hydrogen,
despite the high energy and
capex costs of compression

Liquefaction of hydrogen can
improve the energy density but
requires additional power for
liquefaction and a high-cost
investment in new distribution
and storage infrastructure

The technological challenge of
working with hydrogen is more
complex than working with
CNG
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The need for high gravimetric energy density in aviation bha
favours liquid hydrogen. Volumetric energy density is also a S
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consideration to maximise passenger space.
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Range matters, for operational missions in aviation. Fuel / sbh4
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storage energy density and fuel efficiency are key.
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Composite cryogenic liquid hydrogen tanks — essential for 2)25:”4
extreme weight sensitivity in rocket fuel applications .
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Universal hydrogen - refillable liquid hydrogen sbh4
modules for fuel-cell regional turbo prop flight consulting




For land-based mobility volumetric energy density sbh4

(accounting for typical container properties and system
efficiencies) is generally key, for aviation gravimetric leads
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The hydrogen molecule has a very high
gravimetric energy density due to its low
molecular mass

However, the mass of the storage
container must also be considered in the
overall energy system

When combining the mass of the fuel and
its relevant storage container, compressed
hydrogen gas becomes less competitive
than ammonia, LPG, petrol and deisel,
even at 700 bar

However liquid hydrogen is still an
exceptionally good energy vector by mass

Most ground based applications benefit
from a high volumetric energy density —
aviation is more sensitve to gravimetric
energy denstity
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Hydrogen and hydrocarbon e-fuels for
aviation and rocket propulsion
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Hydrogen is on the way in...

Hydrogen-powered drones are in regular service for monitoring and surveilance, for
example fertiliser dosing, chemical plant maintenance and pipeline surveilance. See Doosan
Mobility as an example drone provider.

Hydrogen powered drones may scale up and penetrate a wider range of applications, for
exampel packet deliveries and urban taxis. See PlugPower & HevenDrones recent
partnership announcement.

The high gravimetric energy density of hydrogen makes it suitable as an aviation fuel,
where weight is more sensitive than volume. However, the weight of the hydrogen storage
vessel must be considered in addition to the hydrogen. Type 4 carbon fibre composite
cylinders at 700 bar will be favoured.

Hydrogen fuelled, fuel-cell powered turbo-prop aircraft have been tested in the UK, USA,
Germany and China by companies such as Ruixiang, H2FLY, HES Energy Systems, ZeroAvia
and Pipistrel. Gaseous or liquid hydrogen may be used as a fuel for these lighter aircraft.

Airbus are developing ZEROe hydrogen fuelled jets. Liquid hydrogen will be required as a
fuel for these larger jet aircraft that will serve longer routes at higher speeds.

But hydrocarbons are not yet on the way out...

Rocket propulsion is a good candidate for liquid or solid hydrogen, but cost concerns favour
fossil fuels.

NASA specified hydrogen fuel for many operations to reduce the environmental impact and
the world’s largest hydrogen storage sphere is at Cape Canaveral

The SpaceX programme (with the most planned satellite launches) uses methane, and will
potentially use e-methane.

E-fuels, or synthetic fuels can be produced to replicate the properties of aviation kerosene.
They can be produced with low carbon intensity and can use recycled CO2, but they release
CO2 when burned during flight, just like conventional fossil fuels. They may be an interim
solution, with a peak between 2040 and 2050.

In the EU, legislation in several countries has stipulated that a minimum percentage of all
aviation fuels must be e-fuels by 2030.

Boeing is focusing on e-fuels, for example through their partnership with SkyNRG.

The US Air Force has tested AIRMADE™ SAF from Air Company

Introducing Airous /FRCOE

TUrboprop.

2,000+nm
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Production of synthetic aviation fuel (SAF) is dominating the first wave of e- consulting
fuels PtL projects.

11 August 2023 Images, BP Lingen refinery, Industriepark Hochst (INERATEC GmbH), Heide Refinery 12
e-Fuels are mandated to be 2% of the aviation fuels mix in Germany by 2030



Steam-fed Solid Oxide Electrolysis can use
excess heat for high efficiency.
Co-electrolysis generates syngas for PtL.
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Solid Oxide Electrolysis for energy-efficient e-fuels production
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Synthetic e-fuels are more expensive than methanol, but their ability to leverage Sbh4
established supply chains and end-user equipment supports the higher prices for these consulting
“drop-in replacements” for fossil fuels.
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Aviation H2, Australia — plans to use a sbh4
mixture of hydrogen and cracked ammonia  consting
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Reaction Engines, UK - ammonia cracker sbh4
technology for use to prepare fuel for jet engines oS

https://www.aerospacetestinginternational.com/news/engine-testing/reaction-engines-spin-out-will-develop-device-to-

enable-ammonias-use-as-jet-fuel.html 16
https://www.flightglobal.com/engines/reaction-engines-unveils-low-carbon-spin-off-for-sabre-technology/146269.article
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Introduction to Stephen B. Harrison conslting

Stephen B. Harrison is the founder and managing director at sbh4 GmbH in
Germany. His work focuses on decarbonisation and greenhouse gas emissions
reduction. Hydrogen and CCTUS are fundamental pillars of his consulting practice,
and he supports many industrial clients with their decarbonisation programmes.

Operating companies, gas analyser OEMs, private equity firms, investment fund
managers and start-ups are also regular clients. Stephen has accumulated
extensive M&A and investment due diligence experience in the clean-tech sector.

Stephen served as the international hydrogen and CCTUS expert for multiple
World Bank, IFC and ADB projects in Namibia, Pakistan, Palau and Viet Nam. His
background is in industrial and specialty gases, including 27 years at BOC Gases,
The BOC Group and Linde Gas. For 14 years, he was a global business leader in
these FTSE100 and DAX30 companies.

As a member of the H2 View and gasworld editorial advisory boards, Stephen
advises the direction for these leading international publications.

Stephen has served as a member of the scientific committee for CEM 2023. He
also served on the Technical Committee for the Green Hydrogen Summitin Oman
in December 2022 and the Advisory Board of the International Power Summitin
Munich in September 2022.
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