Potential Locations for CO₂ Capture from Steam Methane Reforming | | Location A | |---------------|--| | Process stage | Pre-PSA | | Advantages | High pressure, high CO ₂ concentration, highest CO ₂ partial pressure, lowest unit cost of CO ₂ capture from Amine Solvent or VSA processes | | Disadvantages | Max 70 % CO_2 capture rate possible (burner CO_2 emissions not captured), high flowrate (H_2 included) | ## **Location B** #### Post-PSA Low flowrate (H₂ removed), highest CO₂ concentration Max 70 % CO₂ capture rate possible (burner CO₂ emissions not captured), low pressure ### **Location C** #### Post-combustion More than 90 % capture rate possible (captures process CO₂ and burner CO₂ emissions), low pressure location can be suitable for emerging CO₂ capture technologies such as TSA and mineralisation Low pressure, lowest CO₂ concentration, high flowrate due to combustion air, highest unit cost of CO₂ capture from Amine Solvent or VSA processes