
Stage 1 (BFG and / or BOFG feedstock): Reduction and CO₂ recovery. Reduction of the RGH₂ oxygen-carrier with CO, H₂ and CH₄ from iron and steel making flue gases.

© 2023 sbh4 GmbH

Stream	CO ₂ Mol%	H₂ Mol%	CO Mol%	N ₂ Mol%	H₂O Mol%	Temp °C
A: Blast Furnace Gas to RGH ₂	22	4	24	50	0	50
B: CO ₂ , N ₂ and steam from RGH ₂	46	0	0	50	4	770
C: CO ₂ and N ₂ to CO ₂ capture	46	0	0	50	4	50
D: CO ₂ to utilisation or sequestration	97	0	0	0	3	100
E: Nitrogen and CO ₂ slip to flue****	5	0	0	92	3	Ambient

Key reactions in the RGH₂ plug-flow, iron-oxide chemical looping reactor

$$3Fe_2O_3 + H_2 \rightarrow 2Fe_3O_4 + H_2O^*$$

 $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2^*$

$$2Fe_3O_4 + 2H_2 \leftrightarrow 6FeO + H_2O^{**}$$

 $2Fe_3O_4 + 2CO \leftrightarrow 6FeO + 2CO_2^{**}$

$$6\text{FeO} + 6\text{H}_2 \leftrightarrow 6\text{Fe} + 6\text{H}_2\text{O}^{***}$$

6Fe0 + 6CO ↔ 6Fe + 6CO₂***

- * This reaction non-reversible is required to ensure full conversion of H₂ and CO in the syngas feed to CO₂ and moisture.
- ** This reversible reaction converts 65 to 80% of hydrogen and CO in the syngas feed to CO₂ and moisture.
- *** This reversible reaction converts 30 to 40% of hydrogen and CO in the syngas feed to CO2 and moisture.

^{****} Composition shown is indicative of solvent-based CO₂ capture plants operating at a reasonable balance of CO₂ capture rate and energy efficiency).