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1. Key social, economic, and policy factors that
will shape the future landscape of the industry

Policy and CO2 emissions costs drive the business case for CO2
capture for CO2 utilisation



CO2 emissions costs, or opportunity costs around
the world are progressively rising and geographic 2!]22'?
coverage is increasing. °
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Two views of CO2 capture at Holcim, Brevic. sbh4
Social acceptance was and remains key. consulting
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1.1 Processes that require no
(additional) energy for CO2 capture

Lowest incremental capex and opex, brownfield sites, minimal disruption.
Best economics.
Best social acceptance?
Best policy support?
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Syngas, Towngas — 3,500km of pipelines in Hong Kong for 1.9
million domestic, commercial and industrial customers




Hong Kong Town Gas - Tai Po Catalytic Rich Gas naphtha/methane reformer and CO, capture process
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CO2 capture and removal (with vent to atmosphere) sbh4
is integrated into ammonia production. consuting




Air-fed Ammonia Production Process

Grey ammonia
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Oxygen-fed Ethylene Oxide Production with Integrated CO, Capture

Sb h4 C D © 2023 sbh4 GmbH
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2. Balancing operational efficiency with emissions
reduction to achieve net-positive environmental impacts.

You can’t fight science, but you can choose the right science to work for you.
Technology selection must fit the flue gas input and required CO2 output.

The energy requirements are driven by fundamental thermodynamics and the relevant
heat and mass balances for the chosen technology.



For each technology, the specific energy requirement falls as the flue Sbh4
gas CO2 concentration increases. A high CO2 capture rate also consulting
increases the specific energy requirement.
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High purity CO2 feed to the liquefier results in less CO2 losses from the
liquefier inert gas (N2/CH4/02/CO) purge. Also (not shown on this diagram) Sbh4
dry CO2 to the liquefier results in less CO2 losses on the liquefier dryer unit. consulting

The holistic system CO2 losses, or CO2 capture rate must be analysed.

Industrial Gases Processing, Haring et al

12 September, 2025



The CO2 capture system inlet and outlet partial pressures of
CO2 are important factors for technology selection and within
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each technology, heavily influence the process efficiency.

Partial pressure of acid gas in feed, psia
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3. Emerging innovations that could revolutionise
CCU capabilities and applications

To revolutionise CCU, we must cut the cost of CO2 capture.
Leveraging the right science for each application.
A review of established, emerging and disruptive technologies.
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3.1 Chemisorption or physisorption in
solvent-based CO2 capture systems

Physisorption works well with high partial pressure of CO2
and has a lower regeneration energy since CO2 is loosely
bound to the adsorbent



Shell ADIP ULTRA, as implemented at Shell Quest for pre-

combustion CCS from SMRs. Amine solvent with a flash between the Shh4
absorption and stripping columns utilises SMR process gas pressure  consulting
to reduce regeneration energy.

TREATED GAS

ABSORBER h g@m*
=]

L transfe : : :

sﬁ:ﬂ:ra zglg(r?wr:s e TREATED FLASH GAS TO FUEL GAS REGENERATOR ’ High pressure operatl-on means that
More robust operction: the solvent regeneration temperature
narrower absorber is |OW6I’, meaning that lower grade
steam can be used.

CO, capture at pressure has multiple

ACID GAS capex and opex benefits
Smaller

conden ser

+ The CO, flash in the high pressure
CO, capture process releases CO, and
reduces the heating energy
requirement by about 30%.

MAKEUP WATER

Y

Slimmer regenerator

Reduced

circulation: HEATING MEDIUM
smaller pumps,

Step change in absorber
size: Shell Turbo Trays

FEED GAS heat exchangers O Reduced energy consumption: The high pressure system 1s smaller
and piping lower operating expenditure and despite being a pressurised

T4

system, capex is reduced by about
Smaller reboilers 30% compared to the very large low-
pressure system.

| *  Footprintis significantly reduced.

DRAIN VESSEL

CONDENSATE
FLASH VESSEL

12 September, 2025 CAPTURING CARBON DIOXIDE (CO2) FROM REFINERY LOW- AND HIGH-PRESSURE STREAMS 18
SHELL WHITE PAPER FEBRUARY 2019



Giammarco Technologies NovaFlash®: high-efficiency Hot Potassium
Carbonate CO2 capture for high-pressure streams. A flash between

sbh4

the high-pressure and low-pressure stripper columns, and an consulting
additional flash tank reduce the energy input requirement.
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Baker Hughes chilled ammonia process (CAP). Previously developed by GE / Alstom. CAP has been Sbh4
demonstrated at various scales. It can either precipitate ammonium bicarbonate or operate fully in the iti
liquid phase. Chilling reduces ammonia carry over with the flue gas vent. Energy demand is in the consulting
range 2 to 3 GJ/tonne CO2, like amines.
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Air Liquide Rectisol™ recovers sulphur chemicals, ammonia, sbh4
humidity and CO2 from the syngas in different stages. Heavy

consulting
metals can also be removed.
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Linde (50 references globally) and Air Liquide / Lurgi (110 references sph4
globally) offer Rectisol™ using a chilled methanol solvent. The main  ¢onsulting
energy input is compression energy for the methanol chiller circuit.




At large scale, Rectisol™ can offer a lower total cost of ownership sbh4
(capex, opex and maintenance) than MEA (Amine), CAP (Chilled

consulting
Ammonia Process) and DMC (Di-methyl carbonate).
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3.2 Physisorption in solid
adsorbent CO2 capture systems

Physisorption works well with high partial pressure of CO2
and has a lower regeneration energy since CO2 is loosely
bound to the adsorbent



Potential Locations for CO, Capture from Steam Methane Reforming

Location A B Cc
S b h4 i Temperature 35°C 25°C 150°C
Iti Post-combustion flue gas Pressure 25 barg 1.4 barg 0.2 barg
consulting a3 CO, partial pressure 3.4 bara 0.6 bara 0.2 bara
cC — co, CO, concentration* 15 % 47 % 20 %
Steam J H, concentration* 76 % 27% 0%
N, concentration*® 1% 1% 62 %
] CO concentration* 5% 15 % 0%
] - Heat __ __. Wadtefiagt H,0 concentration* 0% 0% 17%
> Boiler recovery CH, concentration* 3% 0% 0%
5 T 0, concentration* 0% 0% 1%
2 - *
Water 2 Fired heater Molar
€ co, PSA
'S VU T H, Purification
Compressor P Water Water
e P | Reformer —»| gas |—»| gas [—» A —> —> H
Natural gas Desul- reformey i shift shift ?
feedstock ) D phuri-
sation >
> i
& | ) High w B ——CO
Hydrogen for \ Yoy y, temperature  temperature 2
desulphurisation
Natural gas
for burner

I Y T [

Process stage
Advantages

Disadvantages

Burner air

Pre-PSA

High pressure, high CO, concentration,
highest CO, partial pressure, lowest unit
cost of CO, capture from Amine Solvent
or VSA processes

Max 70 % CO, capture rate possible
(burner CO, emissions not captured),
high flowrate (H, included)

PSA tailgas

Post-PSA
Low flowrate (H, removed), highest CO,
concentration

Max 70 % CO, capture rate possible
(burner CO, emissions not captured),
low pressure

© 2023 sbh4 GmbH

Post-combustion

More than 90 % capture rate possible
(captures process CO, and burner CO,
emissions), low pressure location can be
suitable for emerging CO, capture techno-
logies such as TSA and mineralisation
Low pressure, lowest CO, concentration,
high flowrate due to combustion air,
highest unit cost of CO, capture from
Amine Solvent or VSA processes

Retrofit existing SMRs

Circa 2,000 SMRs
operate worldwide
from 10 to 500 TPD H2

Existing SMRs can be
decarbonised with CO2
capture retrofits.

Location of CO2
capture influences unit
cost and efficiency of
CO2 capture

» Stream pressure
changes

+ Stream CO2
composition
changes

* Maximum potential
CO2 capture rate
changes

25



VSA (Vacuum swing adsorption) with molecular sieve CO2
adsorbents - proven for carbon capture at two Air Products
SMRs feeding the Valero refinery in Port Arthur, USA.
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MOFs can operate in a similar process to VSA with molecular sbh4
sieves. They have the advantage of using physisorption of

. ) ] consulting
CO2 which reduces the regeneration energy requirement.

Metal-organic frameworks (MOFs) are comprised of
metal ions connected organic linker

= Ultrahigh surface areas (as high as 8000 m?/g)
= Huge variety of structures

* Highly porous material

= Structurally flexible
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3.3 Solvent regeneration energy from steam
(dewpoint swing), heat (temperature swing) or
electrical power (pressure swing)?

Which energy source is most freely available at the site?
Which can be more easily decarbonised in the future?



Partial electrification to use MVR (mechanical vapour recompression: Shh4
a type of heat pump). The energy input to the HPC process can be consulting
reduced to less than 1.5 GJ energy per 1,000 tonnes of CO2 captured.

Low-quality heat recovered through exchange
with condensate

)

Heated condensate let down in pressure below
its bubble point, producing low pressure

=]
B
2
o
3

An electrically-driven compressor increases the
steam quality for use in desorption.

With these process improvements, HPC often requires
< 1.5 GJ of energy per 1 ton of CO, captured

https://content-cdn.sessionboard.com/content/Zeebs6yjQSagee7OTfyA POWERGEN%20-%20CATACARB.pdf
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Full electrification: CapsolEoP™ claims 0.7 to 1.5 GJ Electrical power required
per 1,000 tonnes of CO2 captured. The compressor / expander (compander) is Sbh4
key to operating the high pressure HPC process with a flash and recovering consulting
pressure energy from the flue gas.
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Introduction to Stephen B. Harrison and

sbh4 consulting
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Stephen B. Harrison is the founder and managing director at sbh4 GmbH in Germany. His work focuses on decarbonisation
and GHG emissions reduction. E-fuels, hydrogen, ammonia and CCTUS are fundamental pillars of his consulting practice.

Stephen has extensive M&A and investment due diligence advisory experience in the energy and clean-tech sectors.
Private Equity firms, investment fund managers and green-tech start-ups are regular clients. He also supports operating
companies in their mission to decarbonise their scope 1, 2 and 3 GHG emissions.

In 2023, Stephen evaluated seven CCTUS, hydrogen and e-fuels submissions to the European Commission’s Third
Innovation Fund. The fund allocated €2 billion to large-scale decarbonisation projects in Europe. In 2024 he supported the
European Commission with venture capital investment due diligence and assessed eight Horizon grant applications. Again
in 2025, Stephen is assessing seven Innovation Fund applications related to e- and bio-methanol production.

Stephen has served as the international expert and team leader for three ADB projects related to CCTUS and renewable
hydrogen deployment in Pakistan, Palau and Viet Nam. He has also supported the IFC and world bank on e-fuels and green
hydrogen strategy development projects in Namibia and Pakistan.

With a background in industrial and specialty gases, including 27 years at BOC Gases, The BOC Group and Linde Gas,
Stephen has intimate knowledge of e-fuels, hydrogen, ammonia and carbon dioxide from commercial, technical and
operational perspectives. For 14 years, he was a global business leader in these FTSE100 and DAX30 companies.

As a member of the H2 View and gasworld editorial advisory boards, Stephen advises the direction for the leading
hydrogen-focused international publications. Through H2 VIEW, World Hydrogen Leaders and Sustainable Aviation
Futures, he has led Masterclasses covering many hydrogen, SAF and hydrogen derivatives themes in virtual and live
sessions.

Stephen was session chair for the e-fuels and hydrogen propulsion track at the Bremen Hydrogen Technology Exhibition in
September 2023 and chaired the same stream at that conference in Hamburg in 2024. He was also conference chair for the
CO2 utilisation Summit in Hamburg in 2023 and the same event in Berlin in 2024.
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